Salesforce Incentives, Market Information, and Production/Inventory Planning

发表在 Management Science, 2005. DOI: https://doi.org/10.1287/mnsc.1040.0217

Keywords: salesforce; incentives; asymmetric information; screening; production planning


A firm sells a single product through a sales agent. The total sales or demand $$ X = a + \theta + \epsilon $$ where

  • $a$ is the agent’s selling effort
  • $\theta$ is the market condition, $P(\theta = \theta_H) = \rho = 1-P(\theta=\theta_L); \; \theta _H > \theta_L$
  • $\epsilon \sim N(0, \sigma^2)$ is a random noise

The principal designs the agent’s wage contract and makes production decisions; the agent endowed with private information about the market condition, decides whether or not to accept a contract and, if so, how much selling effort to exert.

The following sequence of events:

  1. The firm (or principal) offers a menu of wage contracts
  2. The agent privately observes the value of $\theta$
  3. The agent decides whether or not to participate (work for the firm) and if so, which contract to sign
  4. Under a signed contract, the firm determines the production quantity, and the agent makes the effort decision
  5. Both parties observe the total sales

The firm cannot directly observe the agent’s effort level, and thus must compensate the agent based on the realized value of $X$ .

Assume the agent’s untility for net income $z$ is $U(z) = - e^{-rz}$ with $r > 0$ .

Suppose $s(\cdot)$ is the contract being considered, and cost of effort is assumed to be $V(a)=a^2/2$, the agent solves the following optimization problem $$ \max _a E\left[-e^{-r(s(X)-V(a))}\right] $$

Let the unit selling price be $1 + c$ (the profit margin is thus normalized to $1$), the principal faces a newsvendor-like problem when choosing a proper production quantity.

Let $Y$ be the normally distributed net income. The agent's expected utility is thus $E\left[-e^{-r Y}\right]$. The certainty equivalent of $Y$, denoted by $C E[Y]$, is the fixed net income that provides the agent with a utility level equal to $E\left[-e^{-r Y}\right]$; i.e., $-e^{-r C E[Y]}=E\left[-e^{-r Y}\right]$. It can be easily verified that $$ C E[Y]=\mu_Y-\frac{1}{2} r \sigma_Y^2 $$

Let $a(s, t)$ be the optimal effort decision given contract $s(\cdot)$, and agent’s type $t (= H \text{ or } L)$.

Let $u(s, t)$ be the corresponding expected utility for the agent, i.e., the maximum achievable expected utility under $s$ and $t$.

The agent’s reservation utility is represented by $-U_0$ .


逆向选择与道德风险

说到委托代理理论,那么一定会涉及到「逆向选择」和「道德风险」这两个概念。

用一个例子来说明这二者分别是什么

为了缓解同学们挂科的忧虑心情,你开发了一款产品叫“挂科险”,给挂科的同学一点金钱上的安慰。

但是,这款产品的运营容易出现的一个很大的问题是,买挂科险的往往都是那些不好好学习的学渣,学霸是不会买挂科险的,这样按照学校平均的挂科率来设计保险产品肯定是有问题的。

这里出现的一个现象就是逆向选择(adverse selection),作为担保方,因为你不知道同学们真实的学习水平(不对称信息,asymmetric information),导致买挂科险的大都是不好好学习的。一群不读书的人来买你的挂科险,你分分钟经营不下去。

总的来说,逆向选择指的是因为信息不对称导致的资源配置扭曲的情况。因为信息不对称,所以劣币驱逐良币,好人没法生存下去。

这时候可以通过设计 screening contract 来解决不对称信息的问题。

比如说,提供两种保单

  • 当考试成绩比60略低时(55-59),能获得较高赔付
  • 考试分数越低,赔付额越高

这样,那些徘徊在及格线边缘努力挣扎的同学就会选择第一种保单,而那些躺平摆烂的同学就会选择第二种保单。

于是,我们通过合同的设计就能消除掉不确定信息,使我们知道每个同学的类型。

至于道德风险(moral hazard),当同学买了挂科险之后,就很容易懈怠,不努力学习;买了挂科险,反而挂科的概率更高了。就像人买了车险之后就不好好开车了。

道德风险也是可以通过适当的合同设计来规避的,比方说,规定同学在图书馆学习至少多少个小时的时间,保单才会生效,这就避免了同学摆烂骗保的发生。再比如现在雇佣销售,都是底薪+绩效的工资设计,使用绩效防止员工摆烂。

逆向选择和道德风险这两个概念具有相似性,关于它们的区分也有几种办法。

比方说,事前的信息不对称是逆向选择(你不知道来买保险的人是学霸还是学渣);事后的信息不对称是道德风险(你不知道一个人买了挂科险之后还会不会认真学习)。这是一种比较简单的区别办法。

另一种区别办法是隐蔽信息和隐蔽活动。「不知道来买保险的人是学霸还是学渣」是隐蔽信息,「不知道一个人买了挂科险之后还会不会认真学习」是隐蔽活动。

还有一种是内生 vs 外生。一个人是学霸亦或学渣,在某一时刻是外生的信息;而买了挂科险之后有没有动机摆烂不学习,这是由模型内生的。

updatedupdated2025-12-162025-12-16